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(Received 22 February 2005 and in revised form 20 December 2005)

We study the wake of a cylinder performing rotary oscillations around its axis at
moderate Reynolds number. We observe that the structure of the vortex shedding
is strongly affected by the forcing parameters. The forced wake is characterized by
a ‘lock-in’ region where the vortices are shed at the forcing frequency and a region
where the vortices can be reorganized to give a second frequency close to those
observed for the unforced wake. We show that these modifications of the wake
structure change the dynamic of the fluctuations downstream from the cylinder. We
vary the amplitude and the frequency of the oscillations and study the consequences
of these modifications on the mean flow and the global drag applied on the cylinder.
We then discuss the mechanism responsible for the modification of the fluctuations
and the modification of the drag coefficient.

1. Introduction
Control of vortex shedding has been of great interest in the last decade. From the

practical point of view, controlling shedding in the wake addresses two fundamental
industrial preoccupations. First, for synchronized open flow such as the Bénard–von
Kármán instability, vortex shedding induces vibrations on the structure owing to the
fluctuations of lift and secondly, it is known that the drag depends strongly on the
fluctuations of the perturbed flow. Reducing the strength of vortices shed is thus a way
of reducing vibrations and drag. Among the various ways to reduce vortex shedding,
one consists of applying appropriate oscillatory temporal forcing to the wake. Some
properties of oscillatory flows are reported in reviews by Berger & Willie (1972)
and Bearman (1984). In the particular case of a cross-flow past a circular cylinder,
the effect of ‘in-line’ oscillations on wake structure and hydrodynamic forces have
been the subject of many numerical works such as Blackburn & Henderson (1999)
and Guilmineau & Queutey (2002) and experimental works by Sarpkaya & Isaacson
(1981), Carberry, Sheridan & Rockwell (2001) and Williamson & Roshko (1988).

In the present work, the periodic forcing studied is an oscillating rotating motion
around the cylinder axis specified by its azimuthal velocity and its forcing frequency
as was first visualized by Taneda (1978). In their experimental study, Tokumaru &
Dimotakis (1991) proposed that the rotary oscillation of the cylinder could, for optimal
parameters, achieve a significant drag reduction (80 %) at a Reynolds number of
15 000. The drag coefficient as a function of the forcing parameters was deduced from
the variations of the wake displacement thickness calculated from streamwise mean
velocity profiles. Several numerical calculations described this dependence of drag on
the forcing parameters such as those conducted by Shiels & Leonard (2001), who
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explored the effects of rotary oscillations for a range of Reynolds number from 150
to 15 000 and confirmed the strong decrease in drag for the same Reynolds number
as Tokumaru & Dimotakis (1991), but observed that the forcing was less effective at
lower Reynolds-numbers. The Reynold-number dependence of the efficiency of the
control was also observed by Choi, Choi & Kang (2002) who studied numerically the
effect of the oscillating motion of the circular cylinder on the mean drag reduction
for Reynolds numbers 100 and 1000 which, respectively, passed from 12 % to 60 %.
Concerning the behaviour of the wake characteristics under forcing conditions, several
numerical studies were conducted such as those by Baek, Lee & Sung (2001), and
Baek & Sung (2000), who studied the secondary and tertiary lock-on of the lift coeffi-
cient for small values of forcing amplitude. Cheng, Chew & Luo (2001a) gave in their
paper a detailed study of the flow pattern modifications occurring at and close to
lock-on. In addition, the flow behind an oscillatory cylinder has been a model for flow
control and optimization (see He et al. 2000; Protas & Styczek 2002; Smith, Siegel &
McLaughlin 2002).

Several explanations of the physical mechanisms responsible for drag reduction
have been proposed: from Shiels & Leonard (2001), it seems that the decrease in drag
comes from a time-averaged separation delay initiated by an appropriate rotational
oscillation. Protas & Wesfreid (2002, 2003) proposed in a numerical investigation at
Re= 150 that the modification of the drag was directly correlated to the mean flow
correction (zeroth mode, see Zielinska et al. 1997) caused by the forcing through the
action of the divergence of the Reynolds stress tensor of the fluctuating forced flow.

The first challenge of this present study was to perform experimentally direct drag
measurements, which is delicate for a body in motion and for efforts of this order
of magnitude at our Reynolds number. Direct experimental measurements of the
global drag have not yet been performed except by Fujisawa, Ikemoto & Nagaya
(1998) in the same configuration, but for higher Reynolds number (Re =20 000) and
by integrating the pressure distribution over the cylinder surface for small amplitude
of the oscillation. In the present study, the Reynolds number is Re = 150, the same as
that studied by Protas & Wesfreid (2002, 2003) in their numerical simulation, but it is
assumed that the physical mechanisms remain the same for a larger range. The goal
of this paper is to determine, from the direct drag measurements, a link between the
modification of the dynamics of the forced wake for a large range of amplitudes and
frequencies of the rotary oscillating motion, and the modification of the mean drag
coefficient.

The present paper is structured as follows. In the first section we present the evolu-
tion of the global wake patterns as a function of the forcing parameters from flow
visualizations. Then we present the drag measurements performed in our hydro-
dynamic tunnel as well as the spatial distributions of the fluctuations in the forced
wakes. We discuss the relation between these experimental results as an explanation
for the dependence of the drag regarding the wake patterns. In the last section, we give
the physical mechanism which is responsible for the wake characteristics modifications
and which is known as vorticity control.

2. Experimental set-up
2.1. Control parameters

We study the flow behind an oscillatory cylinder which rotates around its axis
according to

θ(t) = θ0 cos(ωf t),
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Figure 1. Control parameters of the oscillating motion.

Figure 2. Typical streakline visualization in the (x, z)-plane of the wake under forcing condi-
tions. No characteristic spanwise variation can be observed for a large part of the hydrodynamic
tunnel cross-section when the cylinder oscillates.

where ωf is the angular forcing frequency,

ωf = 2πff .

We define the forcing amplitude as

A = Vmax/U0,

where Vmax = (D/2)θ0ωf is the maximal azimuthal velocity of the forced oscillation
(where D is the diameter of the cylinder), and the upstream velocity is U0 (figure 1).
Finally, we define f0 as the vortex-shedding frequency of the unforced wake at the
same Reynolds number. We only have two non-dimensional forcing parameters which
are defined by A and the ratio ff /f0. The natural frequency of vortex shedding is
about 0.98 Hz for Re= 150.

From Poncet (2002, 2004), and as observed in our hydrodynamic tunnel, the cylinder
oscillation produces a strong coherent forcing along the cylinder span which dimi-
nishes the possible spanwise variations due to three-dimensional instabilities or end
effects. The visualization in the plane of the cylinder under forcing conditions (figure 2)
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Figure 3. Test section of the hydrodynamic tunnel.

has been taken in our tunnel and shows that the wake structure does not present
spanwise variations for a large part of the test cross-section. It appears that the
hypothesis of a two-dimensional flow is then a reasonable approximation.

2.2. Description of the hydrodynamic tunnel

Our experiments were performed in a low-velocity water tunnel, built with transparent
Plexiglas walls, with a 10 cm × 10 cm cross-section and a typical velocity U0 = 3 cm s−1.
The circular cylinder has a diameter of D = 0.5 cm which corresponds, for our typical
velocity, to a Reynolds number Re = U0D/ν =150, where ν is the kinematic viscosity.
The tunnel is equipped with a technical section placed just under the test section.
This section is entirely filled with water and interconnected with the test section as
shown in figure 3 and allows us to instrument the cylinder directly without passing
through the Plexiglas walls and to put measuring instruments such as a balance in it,
which is normally impossible in classical hydrodynamic tunnels.

Rotation was produced by a computer-controlled brushless d.c. submerged motor
and was transferred to the obstacle through a transmission mechanism. The wake
visualizations were performed in the (x, y)-plane using laser induced fluorescence
(LIF) technic. The laser sheet is realized by putting a cylindrical lens in front of the
laser beam from an argon ion laser. The dye (fluorescein dye in solution) was injected
on both sides of the centreline in the middle of the tunnel at y = ±D/2, upstream
from the cylinder. The dye was delivered using two small capillary tubes which are
sufficiently far from the cylinder and sufficiently thin (0.07 cm) to prevent their own
wakes from affecting the mean flow for our typical velocity. We have measured the
velocity fields in the same (x, y)-plane as the wake visualizations. We used a standard
particle image velocimetry set-up (PIV) from LaVision R©. The flow was seeded with
spherical particles of a typical diameter of 11 µm. The typical extension of the PIV
images were about 30D going from x = −5D to x = 25D if we take the origin at the
centre of the cylinder cross-section. For all the PIV measurements, we used a 16 × 16
interrogation window with an overlap of 50 % which gives a spatial resolution of
22 360 velocity vectors for each field obtained.

2.3. Hydrodynamic balance

One particularity of our hydrodynamic tunnel is that we can directly measure the
drag Fx on the rotating cylinder. As shown in figure 4, the bluff body is placed on a
plate supported by two thin brass blades of 0.02 cm thick which is free to move in the
streamwise direction. The space around the plate which allows it to move is sufficiently
thin (less than 0.03 cm) not to affect the principal flow. Four floats filled with air are
placed under the plate in order to offset the weight of the plate, the motor and the
cylinder. Gauge sensors of extensiometry from Vishay R© were glued on one of the
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Figure 5. Velocity profile measured by PIV one diameter upstream from the cylinder at
z = D/2. The boundary-layer thickness is estimated at 1 cm.

two blades. When a flow is applied to the bluff body, the two blades become warped
and there is an electric signal due to the deformation of the gauge sensors plugged
with a Wheatstone bridge from Vishay R© and proportional to the force suffered by
the cylinder. Typical forces on the cylinder are of the order of 0.20 mN. However,
the cutoff frequency of this system which is less than 1 Hz, allows us to measure only
mean drag. Nevertheless, the advantage of this prototype of a submerged balance is
that it allows us to measure values of mean forces with a precision of 0.01 mN.

Finally, the boundary-layer thickness was estimated by measuring a velocity profile
one diameter upstream of the cylinder (figure 5). The tunnel has a square cross-section,
and the profile can be measured in the y or z direction. From figure 5, the boundary-
layer thickness was found to be near 1 cm. Thus, it appears that a non-negligible
part of the cylinder span (∼10 % of each side) is located in the tunnel boundary
layers. This implies that the drag measurement, which corresponds to the global
force integrated along the whole cylinder span, takes into account the boundary-layer
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effects. However, the goal of this paper is to study experimentally the effect of the
cylinder oscillation on the global drag for a given Reynolds number, so with constant
boundary layers. Thus, for a study of the relative drag as a function of the forcing
parameters, it appears that these measurements are sufficient to describe precisely the
influence of the forcing on drag.

3. Wake visualizations
3.1. Effect of the forcing frequency on wake pattern

We performed a series of wake visualizations using LIF as a function of the forcing
parameters. Figure 6 shows, for a fixed forcing amplitude (A= 2), the evolution of the
shedding pattern as a function of the forcing frequency. We chose this typical value
of A which allows the exploration of a wide range of physical behaviours (high and
low drag) as a function of the forced frequency.†

For the different forcing frequencies, the forced wake presents the same characteris-
tics: the vortices are shed at the forcing frequency in the near wake (as flapping
vortices). For ff /f0 > 1 (figure 6c–f ), we can see that these vortices merge in the far
wake from both rows to give a new pattern similar to that observed for the unforced
case. This behaviour has been observed numerically in different numerical simulations
such as Lu & Sato (1996), Chou (2001) and Choi, Choi & Kang (2002). This
composite pattern has been also observed by Nishihara, Kanedo & Watanabe (2005)
in the case of a circular cylinder oscillating longitudinally in the streamwise direction,
which shows that this behaviour can be reproduced in forced wakes in general. The
extension at which the vortices present a quasi-stable pattern corresponding to the
forcing frequency is strongly dependent on the value of this frequency. This spatial
lock-in length decreases as the forcing frequency increases. (In this paper, the term
‘lock-in’, which is generally used to distinguish the particular case of forcing ff /f0 = 1
in the literature, is employed to characterize the zone containing shedding structures
at the forcing frequency.) However, in cases where ff /f0 � 1 (figure 6a, b), the forced
pattern persists along the tunnel length, the shed vortices do not interact and no
pattern similar to the unforced case is recovered. Far away, the streaklines do not
show a coherent structure.

3.2. Effect of the forcing amplitude on wake pattern

As we did to study the effect of the forcing frequency on the vortex shedding, we fixed
ff /f0 and varied the forcing amplitude A; the flow visualizations of the wake patterns
are shown in figure 7. The value of the forcing frequency was fixed at ff /f0 = 5 in
order to have a short lock-in length at low amplitude and not to be limited by
the length of the channel. We studied the full evolution of the flow patterns in the
range of forcing amplitude 0 < A < 10. As we will see in § 4, these forcing conditions
correspond to a low drag situation.

The lock-in length is also strongly influenced by the amplitude of the cylinder
motion. For a first range of forcing amplitude, the lock-in region grows with the
amplitude A reaching a maximum. Above this value, which for the forcing frequency
ff /f0 = 5 and this Reynolds number is near A= 5 , it starts to decrease as we continue
to increase the forcing amplitude. For a sufficiently strong amplitude, the forced wake
has almost recovered the shedding pattern of the unforced case. This dependence on
the forcing amplitude is observed for all the forcing frequencies studied, but, as was

† Movies of streaklines visualizations for each pair of forcing parameters used in this work
0.5< ff /f0 < 6 and 1 < A < 10 can be found at http://ftp.espci.fr/shadow/thiriaJFM05.
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Figure 6. Effect of the forcing frequency on the wake at constant forcing amplitude A = 2.
The forcing frequency is (a) ff /f0 = 0.5, (b) ff /f0 = 1, (c) ff /f0 = 2, (d) ff /f0 = 3, (e) ff /f0 = 4
and (f ) ff /f0 = 5. The vortices are shed at the forcing frequency in the near wake and for
ff /f0 > 1 merge from each row to give a new pattern in the far wake similar to that observed
for the unforced case with a frequency slightly lower than the unforced one. This typical
lock-in length decreases as ff /f0 increases.

shown in figure 6, the effective length for a fixed forcing amplitude changes with the
forcing frequency.

The physical mechanisms responsible for the transition between the first near-wake
shedding pattern which comes from the forcing and the second far-wake shedding
pattern have been studied by Thiria & Wesfreid (2006) in the framework of global
linear stability analysis under forcing conditions. In this study, they show that the
dynamics of the re-emergent pattern (and so the near-wake pattern) are intrinsically
related to a change in the spatio-temporal characteristics of the global instability
of the flow owing to the strong mean flow correction induced by the forcing and
which can lead, for strong forcing, to a globally stable flow (i.e. the only characteristic
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Figure 7. Effect of the forcing amplitude on the wake. The forcing frequency is ff /f0 = 5
(low-drag situation), the forcing amplitude is (a) A =1, (b) A = 2, (c) A = 4, (d) A = 5, (e) A = 7
and (f ) A = 9. In the near wake, the vortex shedding is excited at the forcing frequency and
the far wake shows a re-emergent pattern similar to the natural one.

pattern of the wake is the forced near-wake pattern, see figure 7c). In the following
study, the evolution of the lock-in region as a function of the forcing parameters will
be discussed only in relation to drag measurements.

4. Drag measurements
We performed drag measurements with our hydrodynamic balance as a function of

the forcing parameters at Re= 150. Figure 8 shows the evolution of the ratio between
the mean drag measured under forcing and the drag measured with no control
(cylinder at rest). For each forcing frequency, this value was determined as the ratio
of the signal obtained when the cylinder oscillates, and when the rotation is switched
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Figure 8. Variation of the mean drag coefficient CDf /CD0
as a function of the non-dimensional

forcing frequency for (a) A = 1, (b) A = 2 and (c) A = 5. For high amplitude A, the drag
reduction can reach 25 % and drag amplification near 400 %. The location of the most
substantial drag amplification shifts to smaller frequencies as forcing amplitude grows. The
dashed line corresponds to the drag with no forcing. The numerical results for A = 2 from
Protas & Wesfreid (2002) (�) have been added for comparison.

off. The results are plotted as a function of the forcing frequency and for different
forcing amplitudes: A= 1, A= 2 and A= 5. The first observation to be made is that the
global drag is affected by the forcing conditions and that the measurements with our
submerged balance are precise enough to detect small changes in these modifications.
While looking at a single curve, we can see that the drag coefficient has a sharp
maximum and a wide minimum. This coefficient is defined as CD =Fx/

1
2
ρU 2

0 S, where
ρ is the fluid density and S the surface defined by S = Dl where l is the cylinder length.
CDf

and CD0
are, respectively, the drag coefficient obtained under forcing and no

forcing conditions. The value of the drag starts to increase with forcing frequency until
its maximum value which corresponds to a forcing frequency close to the resonant case
(ff /f0 � 1). From this value, the drag coefficient decreases with ff /f0 and for a suffi-
ciently large frequency, we can see drag reduction. Once the minimum value of drag
is reached, CDf

starts to increase again with the forcing frequency and tends to CD0
.

These results are in qualitative agreement with those found by He et al. (2000)
and Cheng, Liu & Lam (2001b) for Re = 200, and experimentally by Tokumaru &
Dimotakis (1991) for a higher Reynolds number (15 000) and quantitative agreement
with those obtained numerically by Protas & Wesfreid (2002) for forcing amplitude
A= 2 (figure 8b).
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Figure 9. Definition of the control volume enclosing the body and extended to Σ1 and
‘Point vortex’ schematization of the Bénard–von Kármán vortex street.

If we increase the forcing amplitude A, the variations in the measured drag become
more pronounced. The maximum value of drag is over four times the value of the
unforced case for the forcing amplitude A= 5 (figure 8c). On the other hand, the
drag is reduced as we increase ff /f0. For this forcing amplitude, the drag reduction
observed is about 25 % for an optimal forcing frequency near ff /f0 = 4–5. These
parameters are in good agreement with those reported by He et al. (2000) and
Bergmann (2004) for a slightly higher Reynolds number (Re = 200): ff /f0 � 4 and
A � 4. The maximum drag reduction is much less than those observed by Tokumaru &
Dimotakis (1991), who obtained a drag reduction of near 80 % at Re =15 000
estimated in term of the streamwise momentum flux for a given control volume,
or from Lu & Sato (1996) who observed numerically a drag reduction of more
than 50 % at Re = 1000. According to Choi et al. (2002), who studied numerically
the effect of rotary oscillation on drag for two different Reynolds number (100 and
1000), it appeared that the effect of the forcing on the drag coefficient was strongly
Reynolds-number dependent even if the physical mechanisms are the same.

The location of the maximum and minimum value of drag depends on the forcing
amplitude. From figure 8(a) to 8(c), we can see that the location of the most substantial
drag amplification shifts to smaller frequencies as forcing amplitude grows. This means
that for higher forcing amplitudes, the high-drag situation does not correspond to
resonant forcing (ff /f0 = 1).

4.1. Hydrodynamic forces

As was observed in the previous section, the forcing conditions strongly affect the
drag coefficient and each modification of the drag corresponds to a radical change in
the spatial characteristic of the wake pattern. Therefore, in order to understand the
effects of the rotary oscillation on the force acting on the body (i.e. the contribution
of the shed pattern to global drag), we chose to adopt an approach for the drag which
takes into account the unsteady and spatial characteristics of the wake.

One way to express the hydrodynamic forces acting on a body is to consider the
impulse relation as was done by Saffman (1992) and recently revisited by Noca,
Shiels & Jeon (1999) or Rockwell (2000) for a finite control volume (i.e. in order
to estimate directly the hydrodynamic forces from PIV velocity fields) (figure 9). If
we write the momentum balance for a geometric control volume Ω0 including the
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body and extended to infinity and if the fluid density is set to one (ρ = 1), that the
hydrodynamic force for a two-dimensional flow can be expressed as follows:

F = − d

dt

∫
Ω0

r × ω dΩ +
d

dt

∮
Σ0

r × (n × V ) dσ. (4.1)

It can easily be shown that the second term on the right-hand side taken over the
contour Σ0 of (4.1) is equal to 0 in the case of a rotating cylinder. We finally obtain
for the expression of the hydrodynamic forces:

F = − d

dt

∫
Ω0

(r × ω) dΩ. (4.2)

This formula associates the force with the time derivative of the vorticity impulse.
As can be seen, the hydrodynamic forces are intrinsically dependent on the spatial
distribution of the vorticity in the entire control volume Ω0. If we consider the special
case of a staggered array of counter-rotating point vortices as used to model the
Bénard–von Kármán vortex street (figure 9), equation (4.2) can be approximated for
the drag component by (Protas & Wesfreid 2003):

Fx
∼= − d

dt

∑
i

Γi	yi = − d

dt
[(+Γ1)(−	y1) + (−Γ2)(+	y2) + · · ·], (4.3)

where Γi and 	yi are now the circulation and the location, respectively, of the vortex
above (or below) the centreline. In our case, the vortices above the centreline (+	yi)
correspond to negative values of Γi and conversely the vortices below the centreline
(−	yi) have positive circulation Γi .

Considering expression (4.3), each vortex contributes in the same way (depending
on its circulation and its position from the centreline) to the global drag force. With
this model in mind, we analyse in the next section the vorticity distribution of the
forced wakes.

5. Particle image velocimetry measurements
5.1. Near wake instantaneous vorticity field

We performed PIV measurements of the near wake of the cylinder using a measure-
ment window between x = 0 and x = 5D for different forcing conditions. The forcing
amplitude has been fixed to A= 5 corresponding to the most significant changes in
the drag coefficient (figure 8c). The vorticity fields are displayed in figure 10 as a
function of the forcing frequency from ff /f0 = 0.5 to ff /f0 = 5. The flow fields shown
in figure 10 have been obtained by phase averaging 200 snapshots of the flow field
obtained by periodic sampling. This phase averaging was obtained by synchronization
between the angular position of the cylinder controlled by computer and the laser
pulses.

As we could expect, the first observation of these vorticity fields show clearly
that the distribution of vorticity in the near wake is strongly affected by the forcing
frequency, as has been observed in the streakline evolution displayed in figure 6 for
A= 2. Except for the first case corresponding to higher drag (ff /f0 = 0.5) which is
particular and will be discussed later, we see that the evolution of the near wake
as a function of the forcing frequency (from ff /f0 = 1 to ff /f0 = 5) is characterized
by two distinct effects due to the rotary oscillation. On the one hand, and as the
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Figure 10. Evolution of the instantaneous vorticity fields in the near wake as a function of
the forcing frequency. The forcing amplitude is A = 5. As ff /f0 increases, the vortices shed
in the near-wake become weaker and come close to the centreline. These figures should be
compared with the streaklines displayed in figure 6 (for A = 2) and the drag curve displayed
in figure 8c).
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Figure 11. Evolution of the circulation Γ calculated on the closest shed vortex as a function
of the forcing frequency. The forcing amplitude is A = 5.

forcing frequency increases, the vortices shed by the cylinder lose intensity, passing
from strong structures to very weak structures, thus decreasing the circulation Γ of
each vortex. On the other hand, during this evolution, the eddies shed approach the
centreline y =0, thus decreasing the distance 	(y) of each vortex from the centreline.
The modification of these two properties of the wake are displayed in figure 11, where
the circulation is obtained by integrating the vorticity flux on the closest shed vortex
and figure 12 as a function of the forcing frequency. This situation corresponds to the
transition from high drag to low drag. Thus, the action of the control on the wake
structure and then the drag becomes more clear: according to relations (4.2) and
(4.3), the rotating oscillation, by recasting the vorticity in the near wake, combines
two complementary effects playing a fundamental role in the drag expression. In most
patterns displayed in figure 10, it is observed that increasing the forcing frequency (i.e.
going from drag amplification to drag reduction situations) diminishes the distance
between the vortex rows and circulation of each eddy shed, so the drag. However, the
case corresponding to the higher drag (as observed in figure 8c for ff /f0 = 0.5 and
A= 5), is a characteristic example where the link between the shedding pattern and
the drag becomes more complicated. The centres of the vortices are very close to the
centreline, which contradicts what has been previously written for the other cases.
The difficulty lies in the fact that the drag expression (4.2) involves a time derivative
and requires knowledge of the vortex formation process, as was discussed by Jeon &
Gharib (2004). A simple snapshot of the vorticity field cannot a priori account for
the instantaneous value of the drag which is, in fact, dictated by its dynamic in time.
However, for most of the observed patterns in figure 10, the shed vortices quickly
take their positions above (or below) the centreline and keep their distance from the
centreline as a function of space. In those cases, (4.3) can be very useful as a guide
to the physical understanding of the effect of the control and the contribution of the
near wake to drag, but is not complete since the case ff /f0 = 0.5, A=5 presents a
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Figure 12. Evolution of the vortex position from the centreline (y = 0) as a function of the
forcing frequency. The forcing amplitude is A = 5.

different dynamic. For this case, the evaluation of the contribution of the near wake to
global drag would require knowledge of its complete evolution in time (which is more
complicated with our experimental set-up). However, from the drag measurements
shown in figure 8, we can expect that the considerable amplification of the circulation
of these structures is responsible for the strong increase in drag.

5.2. Distribution of fluctuations in the entire wake

The previous results concerned the near wake. We investigated the spatial distribution
of fluctuation velocity by studying the r.m.s. fields (field of the fluctuating component

of the velocity u′ =
√

u′2
x + u′2

y ) obtained by PIV at the centreline (y = 0) with a mea-

surement window covering more than 25 cylinder diameters using 250 instantaneous
velocity fields sampled at 2 Hz for each pair of forcing parameters. This number of
fields was found to be sufficient to obtain a well-converged mean flow. The evolution of
the spatial envelope of these fluctuations (where the envelope describes the amplitude
of u′(x, y, t) as a function of x) from the free case to the drag reduction situation (i.e.
for forcing frequency ff /f0 = 5 as a function of the forcing amplitude) is shown in
figure 13.

The envelope observed for the unforced case is representative of the global mode
amplitude which has been the subject of many studies over the past ten years. (Indeed,
the global mode envelope is obtained in the unforced case only with the transversal
component of velocity uy at y = 0 or the longitudinal component ux at y = ymax where
this latter is maximal (see Wesfreid, Goujon-Durand & Zielinska 1996). Here, the full
r.m.s. field is very near to the representation of the envelope obtained with uy .) A
review of the principal studies on the subject has been presented by Chomaz (2005).
Zielinska & Wesfreid (1995), Goujon-Durand, Jenffer & Wesfreid (1994) and Wesfreid,
Goujon-Durand & Zielinska (1996) investigated numerically and experimentally this
global mode in the case of Bénard–von Kármán instability and found scaling laws for
the x and y components of the fluctuating part of the velocity u′. Thiria & Wesfreid
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Figure 13. �, Shapes of the spatial envelope (r.m.s value of the velocity in the wake as a
function of space) as a function of the forcing amplitude for the low-drag situation (ff /f0 = 5).
The distribution of the fluctuations globally decreases and the front between the near-wake
lock-in wave and the far-wake wave is spatially pushed back as the forcing amplitude increases.
Two shapes corresponding to high drag are also plotted (ff /f0 = 1 for A = 1 and A =2 and
are indicated by �).

(2006) study the stability and the scaling laws of these modified global modes under
forcing. For the following, we will consider these shapes only as a footprint of the
velocity fluctuation field as a function of space.

The envelope of this mixed mode (with forced frequency near the body in the lock-in
region and frequency near to those observed for the unforced case in the far wake)
changes its form as a function of the forcing amplitude. The front between the near-
wake lock-in wave and the far-wake wave which is, at low forcing, sharp and
relatively close to the body, is then spatially pushed back as we increase the forcing
amplitude, and the global spatial distribution of the velocity fluctuations becomes
weaker. The distance from the body to the front corresponds to the lock-in length
examined in the previous section. Beyond this point, the recovered shape of velocity
fluctuations, which presents qualitatively the same characteristics as the unforced case,
is related to the far-wake pattern of vortices.

According to the flow visualizations, and applying the conclusions of formula
(4.3), the drag depends on the contributions of the two observed wake patterns: the
near-wake forced shed pattern and the re-emerging one in the far-wake. In term of
drag reduction, it becomes evident that the extent of the lock-in region is of great
importance. For frequencies close to ff /f0 = 5, where one can observe the strongest
drag reductions, the lock-in region is that with the weakest intensity.
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For our Reynolds number, it seems that it is impossible to obtain a semi-infinite
vortex street shed at the forcing frequency promoting the best drag reduction. The
two shear layers present behind the cylinder owing to the presence of the body must
be destabilized to give the re-emerging pattern. The existence of this pattern explains
why it is less efficient to reduce drag than to amplify it, since the control parameters
in this case only push back (without suppressing) the position of the global shedding
front by modification of the mean flow.

For further comparison, we plotted two of the r.m.s. distributions corresponding to
the high-drag situation in figure 13 (ff /f0 = 1 for A= 1 and A= 2) which are indicated
by filled triangles. These distributions exhibit a behaviour opposite to that of the low-
drag frequency. The front is closer to the body and indicates a more violent dynamic
of fluctuations, and the global fluctuations in the wake increase. Furthermore, and
because we are in a lock-in regime, all the modification of the fluctuations due to
the motion of the body is employed to increase the drag. Comparison can be done
between the case ff /f0 = 1 and ff /f0 = 5 for A= 2 in figure 13. For forcing frequency
ff /f0 = 5, the re-emergent pattern exists while it is not present for ff /f0 = 1 and the
only important velocity perturbations are given by the forcing in the near wake where
strong lock-in exists.

If the physical mechanism for control of fluctuations in wake by rotary oscillations
is the same over a large range of Reynolds number, we can suggest that the high
performance obtained for higher Reynolds number (Tokumaru & Dimotakis 1991;
Shiels & Leonard 2001) are probably due to an effective lock-in length much greater
than we can reach for Re= 150. More precisely, it seems that the so-called lock-
on regime studied by Baek & Sung (2000), Baek et al. (2001) and Cheng et al.
(2001a) (i.e. the regime where the whole wake oscillates at the only forcing frequency,
corresponding in our work to a semi-infinite lock-in length) is particularly easily
reached when the Reynolds number is large. Nevertheless, the dependence of the
lock-in boundary as a function of the Reynolds number is still an open question.

6. High-speed camera visualizations
We have seen in the last section that rotary oscillations had a large influence on the

global fluctuations in the wake. In order to understand the mechanism underlying this
situation, we measured the phase lag between the forcing and the shedding vortices.
Wake visualizations were performed in the near wake of the cylinder with a high-speed
digital camera (KODAK R©). The angular position of the cylinder can be followed in
time by painting a mark on the top of the cylinder. We fixed the forcing amplitude
to A= 2, performing the experiment only as a function of the forcing frequency. The
camera frequency acquisition was set for 250 pictures per second in order to obtain a
good decomposition of the motion of the wake. The main features of the experiments
have shown clearly that the phase lag varied with forcing frequency.

Figure 14 shows the evolution of the wake during the formation of one vortex
in the lower row for ff /f0 = 1. During a half period, the position and the rotating
direction of the cylinder is marked by a paint mark and an arrow, respectively, on
each picture composing the evolution of the wake. The pictures show that the motion
of the first vortex (corresponding to positive circulation Γ ) is counter-rotative with
the rotating motion of the cylinder during the entire half-period. By increasing the
forcing frequency, the dynamic of the forced wake changes. The forcing frequency in
the experiment observed in figure 15 is ff /f0 = 1.5. As in the preceding case, we follow
the evolution of the wake from a vortex formation in the lower row. During the first
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Figure 14. Evolution of the wake during a half-period of vortex shedding (i.e the time from
the birth of a vortex in the lower row to the birth of the next one in the upper row). The
forcing frequency is ff /f0 = 1, and the corresponding forcing amplitude is A =2. The black
line indicates the position of the paint mark on the cylinder and the white arrow indicates its
direction. During the whole half-period, the motion of the cylinder is counter-rotative with the
nearest vortex (constructive case). The time interval between each pair of pictures is t =0.08 s.

moments of the formation of this vortex, the cylinder rotates in the direction opposite
to that of the nearest ejected vortex as we observed for the resonant case, shown in
figure 14. When the cylinder changes direction, for the rest of the half-period, the
motion of the cylinder is co-rotative with that of the first vortex in the lower row.
Figure 16 displays the same visualizations for a higher frequency of the oscillation,
where one can observe drag reduction (ff /f0 = 3). In this case, for the whole
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Figure 15. Evolution of the wake during a half-period of vortex shedding (i.e the time from
the birth of a vortex in the lower row to the birth of the next one in the upper row). The
forcing frequency is ff /f0 = 1.5, and the corresponding forcing amplitude is A = 2. The black
line indicates the position of the paint mark on the cylinder and the white arrow indicates
its direction. From pictures one to five (from left to right and top to bottom), the motion
of the cylinder is counter-rotative with the nearest vortex (constructive case as observed in
the resonant case). From picture six, the cylinder changes its direction until the end of the
half-period, the motion of the cylinder and the nearest vortex are co-rotative (destructive case).
The time interval between each pair of pictures is t = 0.054 s.

half-period of vortex shedding, the motion of the cylinder and those of the closest
vortex become co-rotating. These simple observations may explain how the rotating
motion of the cylinder can affect the vorticity distribution in the near-wake. From the
two typical cases displayed in figures 14 and 16 (i.e. the completely counter-rotating
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Figure 16. Evolution of the wake during a half-period of vortex shedding (i.e the time from the
birth of a vortex in the lower row to the birth of the next one in the upper row). The forcing
frequency is ff /f0 = 3 (corresponding to drag reduction situation), and the corresponding
forcing amplitude is A = 2. The black line indicates the position of the paint mark on the
cylinder and the white arrow indicates its direction. During the whole half-period, the motion
of the cylinder is co-rotative with the nearest vortex (destructive case). The time interval
between each pair of pictures is t = 0.027 s.

and co-rotating cases), we can distinguish two types of interaction. The first case,
relating to the complete counter-rotating motion between the cylinder and the closest
vortex, can be seen as a constructive interaction. In this case, the cylinder moves in
the opposite direction to the vortex in the boundary layer. The circulation induced
by the cylinder motion is of the same sign as the circulation of this vortex and then
interacts constructively. Thus, the circulation of each vortex shed every half-period is
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Figure 17. Representation of (a) the constructive case, when the rotating motions of the
cylinder and the nearest vortex are counter-rotating (b) and the destructive case, when the
rotating motions of the cylinder and the nearest vortex are co-rotating.

amplified. In contrast, if these two motions are co-rotating (figure 16), the circulation
created by the cylinder motion is of opposite sign to that of the forming vortex and
leads this time to a destructive interaction. In addition, while moving, the cylinder
plays the role of an angular velocity distribution in the flow field and we can again
distinguish two cases of interaction. In one case, a complete counter-rotating motion
of the cylinder induces in the closest vortex, a velocity tending to displace it from the
centreline. Conversely, a complete co-rotating motion tends to make it approach the
centreline in the case of a co-rotating motion.

This principle, illustrated in figure 17, recalls the basis of the mechanism known as
vorticity control, which consists of injecting unsteady vortices interacting with those
existing in the wake and which has been discussed by Barrett et al. (1999) and Zhu
et al. (2002) in the case of fish-like locomotion studies. They observed that the drag
coefficient of their fish-like body was strongly dependent on the interaction between
the vortices shed from the separation lines and the oscillation of the articulated caudal
fin. They distinguished, as we do in the present paper, a destructive interference case
where drag is reduced and a constructive interference case where the drag increases.

We have generalized this study of the behaviour observed in figures 14, 15 and 16
to the range of forcing frequency from 1 to 5 times the natural shedding frequency
(from the high-drag situation to the low-drag situation). The phases of the motions
of the cylinder and the closest vortex were determined by reconstituting the two
sinusoidal motions as a function of time using several spatio-temporal diagrams at
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Figure 18. Locations of the different ‘probes’ used for spatio-temporal diagrams.

different locations in the near-wake for each series of fast camera visualizations. The
first spatio-temporal diagram was taken at the location of the paint mark on the
cylinder as shown in figure 18. The result allowed us to determine directly the position
of the cylinder as a function of time, but we were unable to detect the exact time
at which the vortex was shed near the cylinder. However, to determine the phase
of the vortex shedding, we studied two spatio-temporal diagrams in two different
locations downstream from the cylinder. Between these two locations, we deduced the
advection velocity of the vortex Vadv. From Vadv, we deduced the time spent by the
vortex in travelling from the cylinder to the first location and then the phase lag due
to advection φadv, with

φadv =
2π

T

(
xfirst location − xorigin

Vadv

)
.

The evolution of the phase lag φ between the rotating motion of the cylinder and the
vortex shedding plotted in figure 19 is obtained from the phase

φc = ωf t

of the sinusoidally rotating cylinder and the phase

φv = (ωf t − φadv)

of the nearest vortex shed.
As can be observed in figure 14, when the phase lag φ for the resonant case is close

to π, the velocity induced by the motion of the cylinder gives a constructive contribu-
tion to that induced by the closest vortex. This constructive contribution involves
a global increase to the fluctuation part of the velocity field, which increases the
circulation and in consequence, the drag. As we increase the forcing frequency, the
phase lag φ starts to decrease. In this case, the contribution of the cylinder during a
half-period of vortex shedding is alternatively constructive and destructive. When the
forcing becomes sufficiently important, the phase lag φ tends to 0; the contribution
of the rotating motion of the cylinder becomes completely destructive to the closest
vortex. Contrary to what we observe for the resonant case, the consequences are that
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Figure 19. Phase lag between the rotating motion of the cylinder and the vortex shedding
as a function of the forcing frequency. For the resonant case, the motion of the cylinder is
counter-rotating with the closest vortex φ/π � 1. As we increase the forcing frequency, the
phase lag tends to 0, the motion of the cylinder becomes co-rotating with the closest vortex.
The forcing amplitude is A =2.

the fluctuations in the flow field are globally weaker than in the natural case. It is
important to note that the constructive (or destructive) contribution of the rotating
motion of the cylinder is, of course, dependent on its amplitude. For this experiment,
the forcing amplitude was fixed at A= 2; if we increase the amplitude, the global
fluctuations in the wake (and thus the drag) can be greater (or weaker), as we saw
from the drag and PIV measurements.

6.1. Discussion

It appears that the mechanism responsible for reduction or amplification of the fluc-
tuations in the wake is that known as vorticity control. The oscillating cylinder plays
the role of an additional vortex which interacts with those in the vortex street. The
phase lag between the vortex shedding and the sinusoidal motion of the cylinder which
depends on the forcing parameters can give either a global constructive or destructive
contribution to the wake vortices which explains why the fluctuations in the wake can
be amplified or reduced. As shown in figure 8, the forcing frequency corresponding to
the maximum (and minimum) drag is a function of the forcing amplitude. According
to our reasoning, the optimum phase lags for the two extreme cases (the high-drag
situation which corresponds to a fully counter-rotating motion between the cylinder
and the closest vortex and the low-drag situation which corresponds to a fully co-
rotative motion) should naturally follow the forcing frequency of these two optima
in drag. For a forcing amplitude A= 5, the phase lag corresponding to the fully
constructive case (φ � π) was found for a forcing frequency near ff /f0 = 0.5 which
corresponds indeed to the maximum value of drag found in figure 8(c), while the
value of φ � 0 was found for a forcing frequency where one observes the best drag
reduction (ff /f0 � 4–5). Table 1 shows the optimal values (higher drag amplification
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A (CDf /CD0 extremum) (ff /f0 extremum) φ

2 1.8 1 π
2 0.9 3–5 0
5 4.3 0.5 π
5 0.75 4–5 0

Table 1. Optimal drag coefficients (in the sense of maximal or minimal drag coefficient) and
their corresponding forcing frequency as a function of forcing amplitude (A =2 and A = 5).
The last column shows the phase lag measured for these optimal frequencies.

and better drag reduction) of the drag coefficient and the phase φ corresponding to
these cases.

We conclude that vorticity control appears to be one of the mechanisms which is
responsible for the drag modification. However, the fact that the phase lag between
the vortex shedding and the cylinder motion changes with the forcing is still an open
problem. As the phase lag is also strongly dependent on the forcing amplitude, we
presume that it is also Reynolds-number dependent which could explain why the
optimal parameters for drag reduction (or amplification) vary with the upstream
velocity (cf. Tokumaru & Dimotakis 1991; Choi et al. 2002).

7. Conclusion
In this paper, we present the first direct drag measurements for a rotating oscillating

cylinder at Re = 150. We confirm the strong dependence of this coefficient as a function
of the forcing parameters: the ratio A of the azimuthal velocity of the cylinder surface
with the upstream velocity and the ratio between the forced and natural frequencies of
the vortex shedding. We have performed direct visualizations of the vortex shedding
and we have observed the space distribution of velocity fluctuations and vorticity.
We correlated the drag modification of a cylinder performing rotary oscillations with
the vorticity control and we have shown that the injection of external vorticity of
adequate sign modifies the near-wake field. The phase lag between the vortex shedding
and the rotary motion of the cylinder gives either a constructive contribution to the
wake which is responsible for a global decrease in the fluctuations in the wake, or a
destructive contribution which gives the opposite behaviour. According to the impulse
formula (cf. Saffman 1992), the drag coefficient is directly correlated to the wake
pattern which is consistent with our results on global modes and drag. The aim of
this paper was to focus on the unsteady characteristics of the wake, but it was observed
that the modification of the fluctuations affects the mean flow as was discussed by
Protas & Wesfreid (2002). The fact that the drag reduction seems to come from
time-averaged separation delay (Shiels & Leonard 2001) or from a modification of
the Reynolds stress can be interpreted as a consequence of the mechanism described
in this paper.
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